

Keigher Tract 1 Survey- Home Sale Survey

THE LORANDA GROUP, INC.

Agricultural Real Estate Brokerage, Auctions, Acquisitions, & Consulting

JAMES F. KEIGHER TRUST/CLIFFORD & MICHELE KEIGHER

Farmland Auction – 439.68 Surveyed Acres, Iroquois County, IL November 21, 2024

Auction Tract 1 Drainage Information

A comprehensive drainage tile project was conducted on Tract 1 in 2012. While no maps have been found to illustrate the installed tile, the letter on the next page indicates confirmation of the work done and the project number. The tile company has been contacted, but to date no maps have been furnished.

June 15, 2012

Dear James,

Enclosed please find your tile map for job# 1345.

All of us at The ADI Family would like to thank you for your business this past year. If you have any future drainage projects, please feel free to contact us at the number provided below.

Thanks again and have a prosperous year.

toll

The ADI Family

Don Colclasure

Cc: Dwight Heubner

Ag Drainage, Inc.

www.agdrainage.com
R 1, Box 5A Timewell, Illinois 62375
800-545-9044

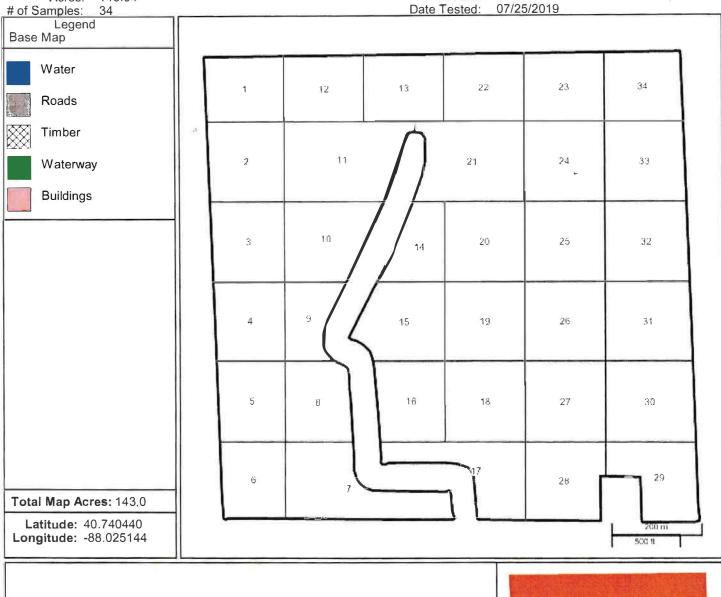
Gilman Fertilizer

Gilman, IL 60938

Customer:

Cliff Keigher

Field:


Description: Acres:

44118_14 (#5415) Maher Farm_Maher Farm

143.04

County: Iroquois Township: Onarga West Range: 10E

Section: 12

LABORATORY ANALYSIS AND RECOMMENDATION REPORT

Special Report For: Cliff Keigher

Samples Submitted by: Jamie Russell

Gilman Fertilizer Co Inc 108 S Main

Gilman, IL 60938-0065 PO Box 65

Order No: 334119 Client ID: 6572

Farm Name: Maher Farm Report Date: 07/25/2019

Field Acres: 143.04

Field Name: Maher Farm

				Pounds	Pounds Per Acre		Percent			Date	Dorte Doy Million			doim					-				/bem
Sample	Water	Buffer	Phos	Potes.		Moo	Coopia			Lalis		5		0		MAA		Lbs/Ac		Percent	Percent Saturation	uo	100
Number	표	Ŧ	phorus*	ssium	Calcium	_	Matter	Sulfur	Zinc	Mang- anese B	Boron	lron	Copper Sodium	SS		NO3-N	Total	Bray P2 Olsen	5	N N	<u>×</u>	2	010
-	0.9	6.5	115	297	6704	1063	4.7					-		_		5			-		4	4	-
2	6.2	6.7	23	285	4762	817	4.5			-			_						62 9				
က	5.9	6.4	99	204	3900	614	4.6			_	-		-			-			60.2				
4	0.9	6.7	43	199	3142	447	3.2						-				-		62.1	14.7		115	
S.	0.9	6.5	64	270	5176	781	4.7												61.8	15.5			
9	5.9	6.4	54	250	4408	683	4.7				-					_			9 65	15.4			
7	0.9	6.5	35	273	5578	1163	3.6		81 1					_		_		-	20 80	20.4			
8	6.1	6.7	99	464	6034	1238	3.3		-		-	_							5 6	000			
6	0.9	6.7	20	154	4428	810	4.8				-	-			-	-			50.7	18.2			
10	5.9	9.9	48	177	4508	764	3.5		-	-		-							200	1 0			
F	6.2	8.9	49	151	2872	390	3.2												66.4				
12	5.9	9.9	24	338	4938	1125	3.0			-							12		7 2 2				
13	6.2	6.8	19	361	6534	1613	3.2		-		-	-		-		-				24.0	100		
14	6.3	6.8	99	358	8150	1452	4.2					-,	_	_		_				10.5	-		12 24 0
15	6.1	6.7	33	337	5618	1208	3.3	-				-								20.00			
16	0.9	9.9	47	212	4218	599	3.4				77			-						15.0			
17	7.2	7.8	26	381	7190	1890	3.3							+	-					0.00	-		
18	6.1	9.9	42	237	5522	1035	36		-		-	-	-91							0.67			
19	6.3	6.9	52	280	5136	849	3 2						. (< 1.						4. 0	7.6		-	
20	6	7.1	47	365	4866	044	0			-													
21	0.0	- «	2	244	0000	1 000	0.0		-	-	+	-		-	_			-	- 1				
: 6	1 0	0 0	7	1 0	0000	000	4.0			-			_						65.5	16.9	1.8 15	15.6 .21	1 24.3
7 8	7.0	ν. ο	45	364	6028	066	3.2												64.6	17.7	2.0 15	15.6 .17	7 23.3
5 5	0.1	7.9	32	268	5388	890	3.3				_								62.6	17.2	1.6 18	18.4 .22	2 21.5
24	0.9	6.7	178	545	7300	1412	3.5							_					58.3	18.8	2.2 20.6	.6 .12	2 31.3
25	6.2	6.8	38	333	2260	1072	3.2													19.8	1.9 16	16.6 .13	
56	6.3	6.9	39	331	5824	927	3.4					_	_						65.7	17.4	1.9 14	14.8 .19	
27	6.3	6.9	43	334	4654	950	3.2		-			_	_		-				61.7				
28	6.1	6.7	28	306	4786	826	3.3				-												
59	5.9	6.5	29	487	5750	973	3.7	-							_				59.0	16.7	1000	100	
30	5.8	6.5	93	372	6508	1053	3.4	77-77		-								-	58.1	15.7			
31	6.2	6.7	77	404	9299	1104	4.4					_	_			_			63.6	17.6			
				SGS	Vorth Am	SGS North America Inc.		117 F Main Street	root	PO Box	. 640	Toulon	DO Boy EAO Toulon II 81402		200,1000	יטיין דיירט י	000						Page
				1				Maill	ובכו	0000	WANTE C	LOUIDIL	WWW Cronservices are com www eas com	3	303) 20	1 (309) 286-2761 1 (309) 286-6251	J9) 280-	5251		1)

This document is issued by the Company under its General Conditions of Service accessible at http://www.sqs.condems.and.conditions.htm. Attention is drawn to the limitation of liability, indemnification issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falisfication of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. www.cropservices.sgs.com, www.sgs.com

LABORATORY ANALYSIS AND RECOMMENDATION REPORT

Special Report For: Cliff Keigher

Samples Submitted by: Jamie Russell

Gilman Fertilizer Co Inc 108 S Main

Gilman, IL 60938-0065 PO Box 65

Order No: 334119 Client ID: 6572

Farm Name: Maher Farm Report Date: 07/25/2019

Field Name: Maher Farm Field Acres: 143.04

				Pounds	Pounds Per Acre		Percent			Parts	Parts Per Million	on			dS/m	PPM			Lbs/Ac		Per	Percent Saturation	uration		100g
Sample	Water	Buffer	Phos-	Pota-		Мад-	Organic		-	Mang-						N-SON	7	Bray	Bray P2 Olsen	sen					
Vumber	Ŧ.	H	phorus*	ssium	Calcium	nesinm	-	Sulfur	Zinc		Boron	Iron Cc	Copper Sodium SS	mnipo	SS	S	Surf To	Total		_	Ca Mg	×	I	Na	CEC
32	6.3	6.8	80	397		1427	4.2													9	61.1 22.4		1.9 14.4	.18	
33	6.3	6.9	58	281	5726	896	3.5		-											9	65.2 18.4	4 1.6	3 14.6		22.0
34	6.1	9.9	0.01.000			1611	4.2				C Basil		-						-	55	58.2 21.4	4 2.2	2.2 18.0	.16	
Field Median	6.1	6.7	51	332	5269	983	3.4												_	9	61.6 18.2	2 1.8	1.8 17.9	.19	22.3

			Fertilit	Fertility Level	3.5			Ferti	lizer Recommendation	Fertilizer Recommendations are in Pounds per Acre	Acre
Field	Field Median	V Low	Low Optim.	tim. Hi	High V	V High		; :		200)
Water pH	6.1										
Phosphorus	51	-					Intended Crop	Corn Grain	Soybean	Corn Grain	Soybean
Potassium	332	THE PERSON NAMED IN					Yield Goal	200 Bu/Ac	60 Bu/Ac	200 Bu/Ac	60 Bu/Ac
Calcium	5569	VS-						2 2 2	2 2 2		
Magnesium	983	The second second						N = F2O5 = N2O	$N = F_2 U_5 = \Lambda_2 U_5$	$N = F_2 O_5 = A_2 O_7$	$N - F_2 U_5 - \Lambda_2 U$
Organic Matter	3.4						Build-up	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0
Sulfur							II Jensen Como		The state of the s		
Zinc							Ciop removal. IL	240 - 86 - 56	0 - 50 - 78	240 - 86 - 56	0 - 50 - 78
Manganese											100 miles
Boron			- 0			T#	**TOTAL REQUIRED	240 - 86 - 56	0 - 50 - 78	240 - 86 - 56	0 - 50 - 78
Iron											2
Copper						Credi	Credits: High Fertility	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0	0 - 0 - 0
Sodium							,)
Olsen P							**ADJUSTED	240 - 86 - 56	0 - 50 - 78	240 - 86 - 56	0 - 50 - 78
Bray P1						RE	RECOMMENDATIONS			3	
Limestone Recommendations	ations		1.6 Tons/Acre	ACTP			Adir	Adjust Nitrogen Recommendations for Previous Crop or other N Sources	dations for Previous Cr	on or other N Sources	

CONVERSIONS: PPM = Lbs/Acre / 2 or Lbs/Acre = PPM x 2

Previous Crop: None Specified

Optimum Ranges: Water pH: 6.3 - 6.8

Phosphorus: 45 - 75 Potassium: 320 - 400

Phosphorus value is reported as a Bray P1 number based on a Mehlich III extraction.

URT Line A Prince By. 206 Fors 2000 0 -0-60

Authorized By: Lande Rosh Data Manager

SGS North America Inc. 117 E Main Street

PO Box 540 Toulon, IL 61483 t (309) 286-2761 f (309) 286-6251

www.cropservices.sgs.com, www.sgs.com

Page 2

Field Application Log - Dry	Fertilizer & Aglime		T	
Grower: Cliff Keigher				
<u>Field Name</u>	Date	Product	Rate	Crop
Maher - 143.4 Acres	10/27/2014	18-46-0	225lbs	Bean Stubble
		0-0-60	225lbs	Bean Stubble
	10/21/2016	18-46-0	250lbs	Bean Stubble
		0-0-60	200lbs	Bean Stubble
	10/15/2019	18-46-0	250	BS
		0-0-60	200	BS
	10/15/2019	Ashkum FG	VRT	BS
		Lime	205.19 T	
	10/23/2021	18-46-0	250lbs	BS
		0-0-60	200lbs	